Типы мышечных волокон

УСЛОВИЯ РОСТА ММВ:

  • Упражнения выполняются с легкими весам (30-40% от 1 ПМ), иначе будут работать БМВ…
  • Упражнения выполняются в очень медленном темпе (подъем 2-3 сек, опускание 3-5 сек, можно ещё медленнее);
  • В каждом подходе упражнений нужно достигать жесткого жжения в мышце + .
  • При выполнении упражнений нужно стараться работать как бы «внутри амплитуды», чтобы работающая мышца была постоянно напряжена (чтобы нагрузка из работающей мышце не уходила), это позволит добиться пункта выше, т.е. жесткого жжения + отказа.
  • Отдых между подходами в упражнениях очень короткий: не более 30 сек.
  • Отдых между упражнениями — длинный: 5-10 минут. Именно столько времени нужно мышце, для того, чтобы в ней существенно снизилось закисление. Хотя, стоит упомянуть и о том, что полностью закисление в мышце возвращается к исходному уровню через 30 -60 мин (это объясняет, почему некоторые атлеты тренируют ММВ буквально целый день, каждый час, по одному упражнению, но эта схема не подходит для большинства людей, ибо у кого есть возможность тренироваться тупо весь день? …).
  • Количество повторений большое: можно даже не считать, главное достигать жесткого жжения в мышце + мышечного отказа. Обычно это около 20-30 повторений за 1 подход.
  • Кол-во подходов тоже большое: (минимум 3, желательно от 5, можно доходить и до 10 в одном упражнении);

Красные и белые мышечные волокна

Красные мышечные волокна

Красные мышечные волокна

Медленные волокна называют красными из-за красной гистохимической окраски, обусловленной содержанием в этих волокнах большого количество миоглобина — пигментного белка красного цвета, который занимается тем, что доставляет кислород от капилляров крови вглубь мышечного волокна.

Красные волокна имеют большое количество митохондрий, в которых происходит процесс окисления для получения энергии ST-волокна окружены обширной сетью капилляров, необходимых для доставки большого количества кислорода с кровью.

Медленные мышечные волокна приспособлены к использованию аэробной системы энергообразования: сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Такие волокна отлично подходят для продолжительной и не интенсивной работы (стайерские дистанции в плавании, легкий бег и ходьба, занятия с легкими весами в умеренном темпе, аэробика), движений, не требующих значительных усилий, поддержании позы. Красные мышечные волокна включаются в работу при нагрузках в пределах 20-25% от максимальной силы и отличаются превосходной выносливостью.

Красные волокна не подойдут для подъема тяжелого веса, спринтерских дистанций в плавании, так как эти виды нагрузок требуют достаточно быстрого получения и расхода энергии.

Белые мышечные волокна

Белые мышечные волокна

В быстрых волокнах меньше миоглобина, поэтому они выглядят белее.

Для белых мышечных волокон характерна высокая активность фермента АТФазы, следовательно АТФ быстро расщепляется с получением большого количества необходимой для интенсивной работы энергии. Так как FТ-волокна обладают высокой скоростью расхода энергии, они требуют и высокой скорости восстановления молекул АТФ, которую может обеспечить только процесс гликолиза, потому что в отличие от процесса окисления (аэробное энергообразование) он протекает непосредственно в саркоплазме мышечных волокон, и не требует доставки кислорода митохондриям, и доставки энергии от них уже к миофибриллам. Гликолиз ведет к образованию быстро накапливающейся молочной кислоты (лактата), поэтому белые волокна быстро устают, что в конечном итоге останавливает работу мышцы. При аэробном энергообразовании в красных волокнах молочная кислота не образуется, поэтому они способны долго поддерживать умеренное напряжение.

Белые волокна имеют больший диаметр по сравнению с красными, в них также содержится гораздо большее количество миофибрилл и гликогена, но меньше количество митохондрий. В белых волокнах находится и креатинфосфат (КФ), необходимый на начальном этапе высокоинтенсивной работы.

Белые волокна больше всего подходят для совершения быстрых, мощных, но кратковременных (так как они обладают низкой выносливостью) усилий. По сравнению с медленными волокнами, FT-волокна могут в два раза быстрее сокращаться и развивать в 10 раз большую силу. Максимальную силу и скорость человеку позволяют развить именно белые волокна. Работа от 25-30% и выше означает, что в мышцах работают именно FТ-волокна.

В зависимости от способа получения энергии быстросокращающиеся мышечные волокна делят на два типа:

  1. Быстрые гликолитические волокна (FTG-волокна). Эти волокна используют процесс гликолиза для получения энергии, т.е. могут использовать исключительно анаэробную систему энергообразования, которая способствует образованию лактата (молочной кислоты). Соответственно, эти волокна не могут производить энергию аэробным способом с участием кислорода. Быстрые гликолитические волокна обладают максимальной силой и скоростью сокращений. Эти волокна играют первостепенную роль при наборе массы в бодибилдинге и обеспечивают пловцам и бегунам спринтерам максимальную скорость.
  2. Быстрые окислительно-гликолитические волокна (FTO-волокна), иначе промежуточные или переходные быстрые волокна. Эти волокна представляют собой как бы промежуточный тип между быстрыми и медленными мышечными волокнами. FTO-волокна обладают мощной анаэробной системой энергообразования, но они приспособлены также и к выполнению достаточно интенсивной аэробной работы. То есть они могут развивать значительные усилия и развивать высокую скорость сокращения, используя гликолиз в качестве основного источника энергии, и в то же время, при низкой интенсивности сокращения, эти волокна довольно эффективно могут использовать и окисление. Промежуточный тип волокон включается в работу при нагрузке 20-40% от максимума, но когда нагрузка достигает приблизительно 40% организм уже полностью переключается на FTG-волокна.

Последовательность включения в работу волокон разных типов

Разберем последовательность включения в работу разных типов мышечных волокон на примере бега. Первыми при начале движения в работу всегда включаются медленные красные волокна. Если требуется легкое усилие, не превышающее 25% от максимума, как, например, при беге трусцой, то работа будет осуществляться за счет их сокращений. Такая работа может осуществляться долго, потому что красные волокна обладают большой выносливостью. По мере увеличения интенсивности нагрузки свыше 20-25% (например, мы решили бежать быстрее), в работу будут включаться быстрые окислительно-гликолитические волокна (FTO-волокна). Когда интенсивность нагрузки возрастет еще больше, к работе начнут подключаться и быстрые гликолитические волокна (FTG-волокна). При нагрузке более 40% от максимума (например во время финального рывка) работа будет выполняться именно за счет быстрых FTG-волокон. Белые гликолитические волокна – самые сильные и быстросокращающиеся, но из-за накопления молочной кислоты, появляющейся в процессе гликолиза, они быстро утомляются. Поэтому мышцы не могут долго работать в режиме нагрузки высокой интенсивности.

Популярные статьи  Приседания Зерхера

А что если мы не плавно набираем скорость, а, например, плывем спринт 50 метров или поднимаем штангу? В таком случае, при резких, взрывных движениях промежуток между началом сокращения медленных и быстрых мышечных волокон минимальный и составляет всего несколько миллисекунд. Получается, что оба типа мышечных волокон начинают сокращаться практически одновременно.

Что мы получаем: при длительной нагрузке в умеренном темпе, работают в основном красные волокна. Благодаря их аэробному способу получения энергии, при длительной аэробной нагрузке (более получаса), сжигаются не только углеводы, но и жиры. Поэтому можно похудеть на беговой дорожке или плавая на стайерские дистанции и сложно это сделать на занятиях с высокоинтенсивной нагрузкой, например на тренажерах. Зато на тренировках, имеющих целью увеличение силы, мышцы прибавляются в объеме значительно больше, чем при аэробных тренировках на выносливость. Это происходит в основном за счет утолщения быстрых волокон (исследования показали, что красные мышечные волокна обладают слабой способностью к гипертрофии.

Лечение

Большинство судорог могут быть прерваны с помощью растяжения мышцы. Для многих судорог ног и стоп это растяжение часто может быть достигнуто путем вставания и ходьбы. При судорогах икроножных мышц возможно сгибание лодыжки с помощью руки, лежа в постели с вытянутой прямо ногой. При писчем спазме нажатие рукой на стенку с пальцами вниз позволит растянуть сгибатели пальцев.

Также можно провести аккуратный массаж мышцы, что позволяет расслабить спазмированную мышцу. Если судорога связана с потерей жидкости, как это часто бывает при активной физической нагрузке, необходима регидратация и восстановление уровня электролитов.

Мышечные релаксанты могут быть использованы в краткосрочной перспективе в определенных ситуациях, для того чтобы позволить мышцам расслабиться при травмах или других состояниях (например радикулопатии). К этим препаратам относятся Циклобензаприн (Flexeril), Орфенадрин (NORFLEX) и баклофен (Lioresal).

В последние годы стали успешно использоваться инъекции терапевтических доз токсина ботулизма (Ботокс) при некоторых дистонических мышечных расстройствах, которые локализованы в ограниченной группе мышц. Хороший ответ может длиться несколько месяцев и более, и инъекции могут быть повторены.

Лечение судорог, которые связаны с конкретными заболеваниями, как правило, фокусируется на лечении основного заболевания.

В тех случаях, когда судороги серьезные, частые, продолжительные, плохо поддаются лечению или не связаны с очевидной причиной, то в таких случаях требуется как дополнительное обследование, так и более интенсивное лечение.

Типы мышечных волокон

  • Автор admin
  • 27 Декабрь, 2012

Структура мышечных тканей.

Перемещение тела в пространстве, осуществление деятельности внутренних органов (сердце, пищеварительный тракт и т.д.), сохранение и фиксация определенной позы – далеко не весь спектр функциональных возможностей мышечных тканей человека. В свою очередь, они делятся на типы (поперечнополосатые и гладкие), каждый из которых имеет свою неповторимую клеточную структуру и организацию.

 Типы мышечных волокон. На данный момент их выделяется 4:

1)  Медленные фазические волокна окислительного типа (МС). Насыщены белком миоглобином, прекрасно связывают кислород. Мышцы, состоящие из такого типа волокон, имеют темно-красный цвет. Их основная задача: фиксация определенного положения тела. Примечательно, что предельное утомление данных волокон достигается крайне медленно, а восстановление, наоборот, быстро.

2)  Быстрые фазические волокна окислительного типа (БСб). Основная функция мышц, состоящих из данных волокон, — быстрые сокращения. Характеризуются также довольно низким уровнем утомляемости. Ученые объясняют это повышенным содержанием в них митохондрий.

3)  Быстрые фазические волокна с гликолитическим типом окисления (БСа). В данном случае АТФ синтезируется за счет процесса гликолиза.  В волокнах этого типа митохондрий содержится значительно меньше, чем в предыдущей категории.  Такие мышцы способны быстро и интенсивно сокращаться, но при этом утомление достигается значительно быстрее. Белок миоглобин здесь отсутствует, что объясняет белый цвет мышц.

4)  Тонические волокна. Отличаются низким уровнем быстродействия и неспособностью к интенсивным фазическим сокращениям. Причиной этому служит малый коэффициент обмена миозиновой АТФ-фазы. Расслабление мышц, состоящих из данных волокон, занимает длительный промежуток времени.

Примечательно, что мышцы, участвующие в интенсивных и быстрых движениях, состоят из небольшого числа волокон, а в мышцах с другим спектром «возможностей» (фиксация и сохранение определенного положения тела в пространстве), наоборот, двигательных единиц насчитывается до нескольких тысяч.

В целом, МС-волокна в организме человека преобладают (от 52% до 55%). При этом силовой потенциал и выносливость мышечных тканей не зависит от гендерной характеристики.

Число мышечных волокон определенного вида зависит от специфики и размера физической нагрузки на организм. Так, например,  в занятиях бегом, легкой атлетикой, плаванием ( дистанция – 500м) активно задействуются БСб-волокна. Сокращение дистанции до 100-200м вовлечет в тренировочный процесс БСа-волокна.

Ученые утверждают, что пропорциональное соотношение мышечных волокон в организме человека предопределено генетически. При этом только систематические занятия спортом способны повлиять на биохимический состав и физиологические свойства мышечных тканей. К примеру, при обилии анаэробных тренировок для повышения выносливости происходят следующие изменения: БСб- волокна по свойствам становятся схожи с БСа-волокнами, а те в свою очередь, «роднятся» с МС-волокнами.

В случае, если необходимо повысить скоростно-силовые характеристики спортсмена, тренировочный процесс приводит к следующим изменениям: МС-волокна приобретают характеристики БСа-волокон, а те, соответственно, свойства БСб-волокон.

Помните, при построении тренировочного процесса необходимо учитывать в том числе и такой показатель, как структура мышечных тканей. Поэтому желательно проводить консультацию со специалистом. Только он после серии специальных тестов и анализов сможет выстроить правильную стратегию по усовершенствованию ваших физиологических характеристик. Будьте здоровы!

Хотите знать больше?

Инструкция по определению своего повторного максимума

Прежде всего, выберите упражнение, которое у Вас получается очень хорошо. Его Вам делать приятно и техника даётся легко. Для начинающих в целях тестирования подходят следующие упражнения:

В идеале это должно быть простое односуставное упражнение. В тренажёрном зале можно выполнить:

и некоторые другие упражнения.

Итак, решите, какое именно упражнение Вы будете использовать и начните определение повторного максимума.

Тест стоит проводить в отдельный от тренировок день. Хорошенько разомнитесь и выставьте на снаряде вес, который Вы можете одолеть не менее 8 раз. Сделайте с ним подход из 6 повторений.

Затем увеличьте вес примерно на 10%, отдохните 2-3 минуты, и снова проделайте подход в данном упражнении, сделав 3-4 повторения.

Популярные статьи  Зумба фитнес

Далее вновь увеличьте вес на 5-10%, отдохните 3 минуты и снова сделайте несколько повторений (3-2), не доводя усилия до отказа.

Таким образом, продолжайте эту процедуру до тех пор, пока не достигнете такого веса, который будет Вам по силам лишь в одном технически точном повторении. Убедитесь, что вес, увеличенный на 1-2% Вам уже не по силам.

Если Вы используете упражнение жим штанги лёжа на наклонной или на горизонтальной скамье, обязательно позовите на помощь партнёра, который будет следить за Вами и «спасёт» Вас, если не справитесь.

Прекратите выполнение теста, если почувствуете малейшие признаки травмы или перенапряжения: боль в мышцах или в суставах, неудобство траектории упражнения, потемнение в глазах.

Затратив примерно 15 минут Вы узнаете, на что способны в данном упражнении.

Типы сокращения

Типы сокращения

Изометрическое или статическое сокращение не приводит к движению, но вызывает напряжение в мышцах и расход энергии.

Изотоническое или динамическое сокращение создает движение.

Скелетные мышцы прикрепляются на своих концах к костям сухожилиями. Следовательно, существует сопротивление, которое мышца должна преодолеть, чтобы сократиться. Когда сопротивление больше напряжения, установившегося в активированной мышце, она не может укоротиться и движение не происходит, тогда как когда сопротивление меньше создаваемого напряжения, происходит укорочение, которое будет тем быстрее, чем меньше нагрузка напряжения. Термин сокращение используется здесь для обозначения развития напряжения в мышце, но он не обязательно подразумевает, что она укорачивается, так как это зависит от имеющегося внешнего сопротивления. Исходя из вышеизложенного, может быть несколько типов сокращений, в зависимости от того, вызывают ли они движение:

Изометрическое или статическое сокращение. При этом типе сокращения напряжение мышц не превышает сопротивления для преодоления. Мышца не уменьшается в длину и движение не генерируется, хотя расход энергии есть.

Изотоническое или динамическое сокращение. В отличие от предыдущего, мышца укорачивается или удлиняется. Изотонические сокращения наиболее распространены в повседневной деятельности и в большинстве видов спорта, поскольку мышечное напряжение обычно вызывает укорочение или удлинение мышечных волокон данной мышцы. Он может быть двух видов: концентрический или эксцентрический.

Можно определить и другие типы сокращений, которые на самом деле представляют собой не что иное, как комбинацию трех основных, описанных ранее:

ауксотоническое сокращение. Изотоническое сокращение сочетается с изометрическим сокращением в разных пропорциях. Примером такого сокращения может быть поднятие тяжестей на скамье.

изокинетическое сокращение. Это тип динамического сокращения с фиксированной скоростью и переменным сопротивлением для преодоления. Это комбинация трех типов сокращения; сначала эксцентрическое сокращение, затем минимальное изометрическое время и последнее время концентрической работы.

скелетные мышечные волокна

Миофибрилла с саркомером , ограниченным двумя Z-бороздками.

Поперечнополосатое мышечное волокно представляет собой удлиненную клетку цилиндрической формы. Его диаметр составляет 50 микрон, а длина может достигать нескольких сантиметров. Она является результатом слияния нескольких клеток, поэтому имеет многочисленные ядра, расположенные на ее периферии (многоядерная клетка). Он окружен мембраной, называемой сарколеммой , а внутренняя область ( цитоплазма ) называется саркоплазмой .

Саркоплазма содержит многочисленные продольные структуры ( миофибриллы ), которые компактно расположены и образованы чередованием двух типов филаментов: толстых филаментов, состоящих из белковых молекул миозина , и тонких филаментов, состоящих из белковых молекул актина . Оба типа филаментов чередуются друг с другом, образуя идеально упорядоченную структуру, отвечающую за сокращение мышц. Миофибрилла регулярно изрезана полосами темного цвета, называемыми полосами Z. Область между двумя последовательными полосами Z называется саркомером .. Саркомер является основной единицей мышечного сокращения. Каждое мышечное волокно содержит большое количество саркомеров, расположенных в упорядоченном порядке с идеальной регулярностью.

Структура скелетного мышечного волокна.

Типы скелетных мышечных волокон

Поперечное сечение скелетной мышцы увеличено в 400 раз.

Существует два типа скелетных мышечных волокон, которые различаются по своей функциональной активности и некоторым аспектам своей структуры: мышечные волокна типа I, также называемые красными или медленно сокращающимися, и мышечные волокна типа II, также называемые белыми или быстросокращающимися. Внутри мышцы обычно имеются волокна обоих типов, хотя в зависимости от типа обычно выполняемого движения преобладают волокна одного из них. Красные волокна преобладают в постуральных мышцах (мышцах туловища), активность которых непрерывна, и белые волокна в мышцах, связанных с движением (мышцы конечностей), которые должны сокращаться быстрее.

  • Тип I. Также называемые медленно сокращающимися или красными волокнами, они обязаны своим цветом обилию миоглобина , они небольшого диаметра, орошаются большим количеством кровеносных сосудов и имеют внутри много митохондрий , но очень мало гликогена . Они работают в основном для действий, требующих малоинтенсивных, но очень длительных сокращений, например, для поддержания осанки. Изобилие митохондрий и способность запасать кислород , обеспечиваемая миоглобином, определяют, что энергия, необходимая для его процессов, получается в основном аэробным путем через цикл Кребса . Это волокна, которые не быстро устают, так как они получают большое количество энергии на единицу потребляемой материи.
  • Тип II. Также называется быстрым подергиванием или белым. Они имеют характеристики, противоположные волокнам I типа, в них мало миоглобина, больше диаметр, они слабо васкуляризированы, содержат мало митохондрий и много гликогена. Организм использует их в основном для кратковременных, но высокоинтенсивных упражнений. Они очень чувствительны к усталости.
  • Тип 2а. Они имеют промежуточные характеристики между типами I и II. В зависимости от типа тренировки, которую выполняет человек, волокна типа IIа могут трансформироваться в волокна типа I, если преобладают длительные силовые упражнения, или в волокна типа II, если в тренировке преобладают упражнения, требующие интенсивной мышечной деятельности, но умеренной интенсивности. продолжительность (от 30 секунд до 2 минут).

Сердечные мышцы

Кровообращение – одна из наиболее важных физиологических функций человека, работа которой обеспечивается благодаря работе сердца, выступающего в качестве некого насоса, перекачивающего кровь по всему организму.

Способность сердца сокращаться в течение всей жизни человека обеспечивается рядом физиологических функций сердечной мышцы. Она является уникальной и сочетает в себе некоторые функции как скелетных, так и гладких мышц. С первыми сердечная мышца схожа тем, что способна быстро сокращаться и интенсивно работать. В то же время, как и гладкие мышцы, мышца сердца работает неутомимо, автономно и не контролируется волей человека. Даже в бессознательном состоянии организма сердце продолжает совершать свою работу.

Основной и очень важной функцией сердечной мышцы является обеспечение движения крови в сосудах за счет своих сокращений.

Физиологическими особенностями сердечной мышцы являются:
автоматизм – возбуждение возникает вследствие процессов, протекающих внутри самой мышцы;
• растяжимость – увеличение длины мышцы не нарушает ее структуры;

• эластичность – способность восстанавливать исходную форму по окончании действия деформирующей силы.

Сердечные мышцы во многом схожи с гладкими. Роль и тех и других сложно переоценить. Будучи незаметными и неподвластными воле человека, они обеспечивают работу, пожалуй, самых жизненно важных органов.

Популярные статьи  Таблица калорийности — крупы (каши)

Все о работе белых волокон

Итак, про красные волокна мы узнали практически все. Теперь попробуем разобраться, как же работают белые волокна. Белые волокна содержат небольшое количество миоглобина и капилляров. Поэтому они выглядят значительно светлее. Для наглядности, вспомните курицу. Ее грудка выглядит белой, а мясо на ногах красным.

Белые волокна сокращаются по сравнению с красными в два раза быстрее. Удивительно и то, что они и силу развивают в 10 раз больше, чем мышцы с красными волокнами. Но у них есть существенный недостаток. Имея такие прекрасные характеристики, белые волокна быстро устают.

Усталость в них накапливается из-за того, что они используют совершенно другой принцип получения энергии. Кроме того, как вы уже знаете, белые волокна имеют два подтипа волокон, хотя по цвету их трудно различить.

Виды мышечных волокон:
Первый подтип — 2В
, который использует для получения энергии — анаэробный гликолиз, процесс без участия кислорода. Данные волокна работают как маленькие аккумуляторы. Так как после физической нагрузки, когда вся энергия истратилась (ее хватает не более чем на 2 минуты), происходит ее возобновление (заряд), но данное восстановление протекает лишь во время отдыха, на протяжении 1-2 минут.

Однако, в результате, анаэробного гликолиза — накапливается молочная кислота (продукт распада), а это значит, что мышечная среда становится кислотной, и волокна начинают «гореть», прекращая свою работу. Поэтому после их восстановления (отдыха 1-2 минуты) они снова готовы выполнять свою функцию, так как восполнили энергетические запасы и, частично, избавились от продуктов распада, благодаря кровотоку.

Источником энергии у белых волокон служит гликоген (вырабатывается при расщеплении и переработки глюкозы) и креатин фосфат (организм его получает из белковой пищи: мясо, рыба, яйца, творог и спортивные добавки). В результате физических действий — гликоген, расщепляясь, дает глюкозу, а глюкоза энергию (АТФ) и молочную кислоту. Что касается креатин фосфата, то он восстанавливает запасы АТФ обратно в мышечных волокнах, то есть получается такой круговорот…

Типы мышечных волокно
: Второй подтип — 2А
, который может до определенного состояния работать без кислорода (анаэробный гликолиз), а затем переключиться и еще какое-то время выполнять работу, но уже используя кислород (аэробный гликолиз) и наоборот. Назначение этих волокон, как вы уже поняли, заключается в том, что они переходят от красных к белым волокнам и от белых к красным, все зависит от выполняемой нагрузки.

Упрощенно можно представить работу подтипа 2А примерно так
:

  1. Вначале начинают выполнять работу красные (медленные) волокна, используя аэробный гликолиз.
  2. Когда нагрузка превышает 25% от максимальной, тогда в работу уже вступают в белые промежуточные волокна (2А).
  3. Но если нагрузка растет еще больше, то промежуточные волокна (2А) — передают эстафету уже волокнам подтипа 2В.

Здесь я представил работу мышечной системы несколько упрощенно… На самом деле все обстоит гораздо сложнее. И представлять, что медленные и равномерные движения будут выполняться только за счет медленных волокон, а скоростные движения за счет быстрых, не совсем правильно. Например, включить в работу быстрые мышечные волокна можно, лишь усложнив технику упражнения, поэтому работа тех или иных мышечных волокон будет зависеть от приложенной силы, скорости и техники.

Система настолько хорошо отлажена, что человек даже не подозревает, какие мышцы у него задействованы в данный момент. Например, во время силового упражнения, как правило, все типы волокон, начинают сокращаться примерно одновременно. Но чтобы полностью выполнить сокращение, медленным красным волокнам понадобится, от 90 до 140 мл/сек. В то же время быстрые волокна успеют полностью сократиться всего за время, от 40 до 90 мл/сек.

свойства мышечной ткани

Сокращение и расслабление сердечной мышцы.

Мышечная ткань состоит из клеток, называемых миоцитами , и обладает четырьмя основными свойствами, которые отличают ее от других тканей:

  • электрическая возбудимость. Мышечная ткань получает электрические импульсы от нервной системы и отвечает на них, генерируя движения.
  • Стягиваемость. Она определяется как способность к укорочению, которая вызывает напряжение, называемое силой сокращения. Если производимое напряжение превышает сопротивление, создается движение, которое будет различаться в зависимости от того, где расположена мышца.
  • Расширяемость. Это способность мышцы растягиваться без каких-либо повреждений. Это свойство проявляется в мышечном слое желудка, который значительно растягивается, когда желудок наполняется пищей в процессе пищеварения.
  • Эластичность. Это относится к способности мышечной ткани возвращаться к своей первоначальной длине после процесса сокращения или растяжения.

Если мышечную ткань сравнить с другими тканями, такими как костная ткань, из которой состоят кости, то важность этих четырех свойств легко понять. Костная ткань электрически не возбудима и не имеет способности сокращаться или изменять форму

Он не растягивается, если он испытывает удлинение, он ломается, вызывая перелом.

Сокращение мышц

Сократимость – свойство мышечных волокон укорачиваться и утолщаться. Это возможно, потому что каждая клетка содержит многочисленные нити, которые состоят из двух разных белков, называемых актином и миозином , оба типа имеют разный вид, актиновые нити тонкие и светлые, а миозиновые нити темные и толстые. Они чередуются друг с другом, накладываясь друг на друга, как при переплетении пальцев рук.

Согласно модели скользящих филаментов, в состоянии покоя мышечное волокно представляет собой умеренную степень перекрытия актиновых и миозиновых филаментов, в состоянии сокращения перекрытие увеличивается, а при удлинении мышцы перекрытие уменьшается и может достигать нуля.

Механизм сокращения поперечнополосатой мышцы.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: